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Outline

= Overview of Deep Learning
= Supervised — Unsupervised
= Deep super-resolution
» Traditional super-resolution

= Structured image super-resolution
» Face hallucination

» 2-D image super-resolution (generic images)
= N-D image super-resolution (Hyperspectral images)

= Summary
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Outline

= Overview of Deep Learning
= Supervised — Unsupervised
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DEEP LEARNING APPLICATIONS




State-of-the-Art CNNs

(Supervised, Image Classification)

= We called those CNNs trained in supervision way are “backbone

“or “baseline” nets
= SOTA now

» High-performance

= ResNet

» Wide-ResNet

» ResNeSt

= Swin-Transformer

= CoAtNet [2021 late]
= High-efficiency

= MobileNet v3

= EfficientNet v2

= CSPNet (MIT!!)

= Anti-aliasing CNNs ICML19
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Computer Vision Applications (Supervised)

Semantic Object Instance
Segmentation Detection Segmentation

Classification

peaonl DOG, DOG, CAT ~ DOG, DOG, CAT
4 Ui ’ S J
NO Spatia| eXtent NO ObjeCtS, jUSt pixe|S MUltlple ObJeCt This image is CCO public domain

Slide credit; CS231n, Stanford
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised Deep Learning

= How to generate an image with good quality?
» Generative adversarial network (GAN)

1(ReaI]
D 0
(discriminator (fake)
real image 1{rea[}

— Discriminator training
— Generator training

G
E (generator)

Z - N(,I)

fake image

Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
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Outline

= Deep super-resolution
» Traditional super-resolution
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IMAGE SUPER-RESOLUTION




What is Super Resolution?

= Super Resolution

» Restore High-Resolution(HR) image(or video) from Low-
Resolution(LR) image(or video)

= According to the number of input LR images, SR can be classified
SISR or MISR

= Efficient & Popular
= Single Image Super Resolution

Super
Resolution




What is Super Resolution?

» Single Image Super Resolution

» Restore High-Resolution(HR) image(or video) from Low-Resolution(LR)
image(or video)

= |lI-Posed Problem.. (Regular Inverse Problem) — We can’t have ground truth
from LR image

= Multiple results!!




What is Super Resolution?

= Interpolation-based Single
Image Super Resolution
* In image upscaling task,
bicubic or bilinear or
Lanczos interpolation is

usually used.
» Fast, easy.. but low quality..
; Super
Resolution

v

¥ bilinear



What is Super Resolution?

= Single Image Super Resolution algorithms
= Interpolation-based method
= Reconstruction-based method
» (Deep) Learning-based method



Applications of Super Resolution

» Satellite image processing
» Medical image processing
= Multimedia Industry and Video Enhancement

TV & Monitor

-

Before Al Technology
HD(1280x720), FHD(1920x180) UHD(3840x2160)

Reference: “Super Resolution Applications in Modern Digital Image Processing”, 2016 1JCA



Deep Learning for Single Image Super Resolution

» First Deep Learning architecture for Single Image Super Resolution
= SRCNN(2014) — three-layer CNN, MSE Loss, Early upsampling
= Compared to traditional methods, it shows excellent performance.

w5
— 10|
2
64-channel features 32-channel feature g ‘i :
15k | : ;
2 ( : SC- 3142 dB
E 310 !
&
3 fl £ 5 H
[t...5%5 conv | 5%5 cony 4 g» :
11 I g s < Bicubici- 30.39 dB : ! . [—sacnN]
L] { ..... ! 00 | : ¢ i~|=—sC

patch extraction nonlinear mapping reconstruction

Figure 2: Sketch of the SRCNN architecture.

» Al Ly L
Original / PSNR Bicubic / 24.04 dB SC / 25.58 dB SRCNN [/ 27.58 dB

Reference: “Image Super-Resolution Using Deep Convolutional Networks”, 2014 ECCV



Deep Learning for Single Image Super Resolution

= Efficient Single Image Super Resolution
= FSRCNN(2016), ESPCN(2016)

» Use Late Upsampling with deconvolution or sub-pixel convolutional
layer

Inefficient in Memory, FLOPS

\ patch extraction nonlinear mapping reconstruction

Figure 2: Sketch of the SRCNN architecture.

Reference: “Image Super-Resolution Using Deep Convolutional Networks”, 2014 ECCV



s

Deep Learning for Single Image Super Resolution

. . Results
» FSRCNN(Fast Super-Resolution Convolutional 25—

294+ FERORT PSNR: > SCN : ® Igg\ﬁ) )
Neural Network) gmal S s

= Use Deconvolution layer instead of pre- g | rets

. . 0 29.1F
processing(upsampling) ol TEEOn ey smows
» Faster and more accurate than SRCNN 02 1o 100 1o
Faster < Running time (sec) — > Slower

From SRCNN to FSRCNN

SRCNN [EEIER
interpolation
Original
low-resolution |,
image K

- [4
N Patch extraction and Non-linear 3 High-resolution
~ Reconstruction y
rcprcsentatlon Mappmg lmage

i :'-:rl o »Comv(5,d, l)l'( omv(l,s, dI’Com(} s, s}#&.mu s S].’l)e( onv(9,1,s

T ~ Feature extraction Shrinking Mapping Expandmg Deconvolution

Reference: “Accelerating the Super-Resolution Convolutional Neural Network”, 2016 ECCV



Deep Learning for Single Image Super Resolution

» ESPCN(Real-Time Single Image and Video Super-Resolution

Using an Efficient Sub-Pixel
= Convolutional Neural Network)

= Use sub-pixel convolutional layer (pixel shuffler or depth_to space)

» This sub-pixel convolutional layer is used in recent SR models

Low-resolution image (input) n; feature maps ny., feature maps

rZ channels High-resolution image (output)

A o i an
et e e e e
\. \.

BT

Hidden layers Sub-pixel convolution layer

Figure 1. The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolution layers for feature maps extraction,
and a sub-pixel convolution layer that aggregates the feature maps from LR space and builds the SR image in a single step.

class

Net(nn.Module):

def __init__ (self, upscale_factor):

super(Net, self)._ init_ ()

self.convl =
self.conv? =
self.conv3d =

self.convd =

nn.Conw2d{1, &4, (5, 5), (1, 1), (2, 2})

nn.Conv2d({64, &4, (3, 3), (1, 1), (1, 1))

nn.Conv2d{64, 32, (3, 3), (1, 1), (1, 1))

nn.Conv2d({32, 1 * (upscale_factor ** 2}, (3, 3}, (1, 1), (1, 1))

self.pixel shuffle = nn.PixelShuffle(upscale_factor)

def forward{self,

®h:

x = F.tanh(self.convl(x))
x = F.tanh(self.conv2(x))
x = F.tanh(self.conv3(x))
x = F.sipgmoid(self.pixel_shuffle{self.convd(x)))

return x

Reference: “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network”, 2016 CVPR

Code: https://github.com/leftthomas/ESPCN

Type A-3

21




Deep Learning for Single Image Super Resolution

= Deeper Networks for Super-Resolution
= SRCNN, FSRCNN, ESPCN are shallow network — Why not deep network?
» Failed to train deeper models.. — Use shallow network — how to use deeper

network?
o B b e BT A E B R AT B S T _
R e 8
z z 25
32 -
rri: -~ -SRCNN (3-1-5) o
i - - SRCNN (9-1-1-5, n,,=16) ¥ - == SRCNN (9-3-5)
w315 SRCNN (3-1-1-5. 1. =32 = - = SRCNM (9-3—1-5)
. e ‘ i & —SRCNN (9-3-3-5)
o —SRCNN {9-1-1-1-5, n,,=32, n,,=16) B i — SRCNM (9-3-3-3)
= i i , |—SC (31.42 dB) < 31.5F —5C (31.42 dB)
2 4 E E 1|:| ‘2 [ | i i i i i i r r "
1 2 3 4 5 ] T 8 [
Mumbser of backprops % 10° Number of baskprops o
(a) 9-1-1-5 (na22 = 32) and 9-1-1-1-5 (na2 = 32, nay = 16) (b) 9-3-3-5 and 9-3-3-3

Fig. 9. Deeper structure does not always lead to better
results.

Reference: “Image Super-Resolution Using Deep Convolutional Networks”, 2014 ECCV



Deep Learning for Single Image Super Resolution

» VDSR(Accurate Image Super-Resolution Using Very Deep
Convolutional Networks)

» VGG based deeper model(20-layer) for Super-Resolution — large
receptive field

= Residual learning & High learning rate with gradient clipping

» MSE Loss, Early upsampling

Reference: “Accurate Image Super-Resolution Using Very Deep Convolutional Networks”, 2016 CVPR

Epoch 10 20 40 80
Residual 36.90 | 36.64 | 37.12 | 37.05
Non-Residual || 27.42 | 19.59 | 31.38 | 35.66
Difference 948 | 17.05 | 5.74 1.39
(a) Initial learning rate 0.1
Epoch 10 20 40 80
Residual 36.74 | 36.87 | 3691 | 36.93
Non-Residual || 30.33 | 33.59 | 36.26 | 36.42
Difference 6.41 3.28 0.65 0.52
(b} Initial learning rate 0.01
Epoch 10 20 40 80
Residual 36.31 | 36.46 | 36.52 | 36.52
Non-Residual 33.97 | 35.08 | 36.11 | 36.11
Difference 2.35 1.38 0.42 0.40

(e) Initial learning rate 0.001

are

[ il
o o
Py =

PSMNA (dB)
w
~

A8

66

* SelfEx

* VDSR (Ours)

* SRCNN

A+

RFL

6.4

102

ind
L

0w

ol

w

i

running timeis)

0=
fast



Deep Learning for Single Image Super Resolution

» Deeper Networks for Super-Resolution after VDSR
» DRCN(Deeply-recursive Convolutional network), 2016 CVPR
= SRResNet, 2017 CVPR
» DRRN(Deep Recursive Residual Network), 2017 CVPR

x19

:D{ — ,, — e :>® =

=

Reference: “Deep Learning for Single Image Super-Resolution: A Brief Review”, 2018 IEEE Transactions on Multimedia (TMM)

(a) VDSR

e B

(¢) SRResNet (d) DRRN

X16




Deep Learning for Single Image Super Resolution

» Deeper Networks for Super-Resolution after VDSR

» EDSR, MDSR (Enhanced Deep Residual Network, Multi Scale EDSR), 2017
CVPRW

= DenseSR, 2017 CVPR
= MemNet, 2017 CVPR

T TR IS N T

(e) EDSR (f) DenseSR

x2
TN .
o — X80
:)I_:y J:IEI_(%_ >©p_l§l®:)lﬂ@lw ”Qlwxﬂﬂﬂmﬂi
|l =
/WE : ”.:)ngumncn

(2) MDSR (h) MemNet
Reference: “Deep Learning for Single Image Super-Resolution: A Brief Review”, 2018 IEEE Transactions on Multimedia (TMM)
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Deep Learning for Single Image Super Resolution

» Generative Adversarial Network(GAN) for Super-Resolution

» SRGAN(Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network)

» First GAN-based SR Model, MSE Loss — Blurry Output — GAN loss + Content loss =
Perceptual loss

bicubic SRResNet SRGAN original
(21.55dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Reference: “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, 2017 CVPR



Deep Learning for Single Image Super Resolution

» Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network
» MSE Loss — Blurry Output — GAN loss + Content loss = Perceptual loss

» Replace MSE loss to VGG loss (used in style transfer) and add adversarial loss

Generator Network B residual blocks
L

kanB4s1 | k3nBds1  k3nBds1 ' k3nB4s1  k3n256s1 k9n3s1

(4)

r=1 y=1

We; H

LIF ]
HR

ey = W 2D (e 5

skip connection Vi Hi, o g=1 y=1 (5)
LR
Discriminator Network k3n128s2 Kan256s2 K3n512s2 - i 3 {GEC‘: {I }}-’51?&'}
k3nGds1 k3n64s2 k3n128s1 k3n256s1 k3n512s1 N
Ig5, =) —log Doy, (Goc(I'F)) (6)
=1
ISR — IR 4 10735k, (3)
g e’

content loss adversarial loss
- -

-
perceptual loss (for VGG based content losses)

Reference: “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, 2017 CVPR



Deep Learning for Single Image Super Resolution

» Generative Adversarial Network(GAN) for Super-Resolution
» SRGAN, EnhanceNet, SRFeat, ESRGAN

Set14

BSD100

Ground-truth Input EnhanceNet SRGAN ESRGAN

Reference: “A Deep Journey into Super-resolution: A survey”, 2019 arXiv



The SOTA so far (HANet, ECCV 2020)

@ Siwoid 2 I ST RCAB Channel attention
Function
® Element-wise =4 — {p ~ K‘
product ] ?_
@ Flement wise Long skip connection
sum
Conv+RelLU

Nx HxW=

Layer Altention
Conv+Re LU Mo le
+Pooling .
- w
| Conv ‘

LR input

Channel-5 patial
Attention Module

Long skip connection

» Bring the “attention” module to the generator

2022/5/4 CCHSU@ACVLab



WHAT'S NEXT?

Finding the issues in current SRs

2022/5/4 CCHSU@ACVLab 32



Some Issues for Super Resolution

» Loss function
* Propose a various loss function methods in Image Restoration task
» Report the best result when using mixed loss with MS-SSIM loss + 11 loss

L= e B L (L) G L8y (1)
(b} Clean c) Noisy (f) SSIM ) MS-551M (h) Mix
i) Clean Noisy m) S5IM 1 MS-55IM (o) Mix

(@) Clean image

Reference: “Loss Functions for Image Restoration with Neural Networks”, 2016 IEEE TCI



Some Issues for Super Resolution

= GAN Loss achieves a high visual quality
» |L1/SSIM losses achieves a high fidelity
= However, we don’t have a metric that can consider both of them

= We show that one of the critical problem in loss functions is
“resolution-aware” information

= Feature distance does not fit “resolution”
» Good quality != High resolution
» E.g., defocused sample/background?

2022/5/4 CCHSU@ACVLab
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Some Issues for Super Resolution

= How about the structured image super-resolution?

= Face hallucination
SR IR

LR Bicubic

= How about multilinear super-resolution
» E.g. Hyperspectral data

SPACE

Ground Truth DCSN

SpeCA [6]
: 2 ‘b- &

HyperCSI-LSS LSS

TenTV

Hsu, Chih-Chung, et al. "Sigan: Siamese generative adversarial network for identity-preserving face hallucination." IEEE Transactions on Image Processing 28.12 (2019): 6225-6236.

2022/5/4 CCHSU@ACVLab 39



Outline

= Deep super-resolution

= Structured image super-resolution
» Face hallucination

2022/5/4 CCHSU@ACVLab
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IDENTITY-PRESERVING FACE
HALLUCINATION

ICIP 18, IEEE Transactions on Image Processing (TIP), Dec. 2019.




Traditional Face Hallucination

-1 14

Amazing but identity
unrecognizable!

LR Bicubic

We achieve

P~ O

2022/5/4 CCHSU@ACVLab 42




Face Hallucination

High-Eesolution

\\\R econstructed face Prototype face 1 ITmtot}rpe face M/

- ' =0 -ty
.

Input face Prototype face 1 Prototype face M

\¥ Low-Resolution _/
I=|Pia=R

T = T .
o = ((PL) 'PL) (K Dictionary
2022/5/4 CCHSU@ACVLab 4




Learning to Hallucinating Face

» Traditional approach
= Dictionary learning by PCA, NMF, ONMF,...etc
» Deep learning-based approach
» End-to-end architecture
» |Input low-resolution face image, out high-resolution face image directly.
» Deep neural network has different structures
»* CNN-based (Convolutional neural network)
» Upsampling layer upscales input signal
» GAN-based (Generative adversarial network)
» High quality result
= May result in identity-unrecognizable

2022/5/4 CCHSU@ACVLab
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GAN-based Face Hallucination

» Pros:

= High visual quality of the reconstructed image
= Cons:

= May be identity-unrecognizable

2022/5/4 CCHSU@ACVLab
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Our Goal

= High visual quality reconstruction
* Even in extreme low-resolution inputs
= |dentity-recognizable reconstruction
= As similar to the ground truth as possible

High visual quality only

LR Interpolation HR

|dentity-recognizable & high visual

2022/5/4 CCHSU@ACVLab q ua I Ity 53



Our Solution

= Key idea
= Label embedding
» Use the label information to fine-tune the generator
» |dentity-recognizable reconstruction
= \We propose “Siamese GAN” (SiGAN)

» Label information will guide the “generator” how to obtain both high-visual
quality and identity-recognizable result

= Partial label information needs only

2022/5/4 CCHSU@ACVLab 54



The Proposed SiGAN

Generator Gy

Contrastive loss

v

----------

Reconstruction
loss

X

>

Discriminator D

2022/5/4

CCHSU@ACVLab

Generator loss

‘A Discriminator loss

S1GAN loss

55



The Loss Function of The Proposed SiGAN

= |_oss function for our generator

, B HR
min max (D 6 =FEp {108; D(x; )]

+E |log (1 - D(G(R)) | + Eo [G(xER), G(xER)]

= subject to [|yR — y5R||, <€
= SR result: G(x*¥) F ;
= E. represents D[G(__ﬂ)=H ]=0
contrastive loss me T -
D[ G(Eﬂ ) = H ] =1
Ba %

2022/5/4 CCHSU@ACVLab 56



Contrastive Loss for SiGAN

= |f we directly minimize Ew(X1, X2)

» The energy and the loss can be made zero by simply making Gw(X1)
a constant function

= \We don’t want to see that
= By adding a contrastive term The same or not (0/1)
= The loss function can be

CNN's parameters

Partial loss function for
a genuine pair

1 2
Lg = E (Ew) =
1
2

L; = =[max(0, margin — E,,)]?

Partial loss function for
2022/5/4 CCHSU@ACVLab an Impostor palr




Test Stage of The Proposed SiGAN

el  (Generator Gy all

Reconstructed :

A simple forward process

2022/5/4 CCHSU@ACVLab
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Experiment Settings

» LR: 8x8

» HR: 32x32 (4x upscaling factor)

= #ldentities of training set: 10,575

» #Training images: 491,131

» #Test images: 3,283

= Face recognition engine: FACENET (State-of-the-art)

2022/5/4 CCHSU@ACVLab
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Subjective Result (8x8=»32x32)

» Face hallucination: Identity-recognizable reconstruction

(a) LR face image
(b) Bicubic

interpolation
c) ECCVCNN

Recurrent
(Google)

(g) Ours w/o label

(h) Ours

(i) Original HR
face image

60
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Subjective Result (16x16=>64x64)

(a) LR face image

(b) Bicubic
interpolation

(c) ECCVCNN
(d) GAN

(e) UR-DGN

1 (f) Pixel-

Recurrent
(Google)

(g) Ours

(h) Original HR
face image

@ ® © @ ® O @ 0 .




Objective Results

Method | Top-1 | Top-5 | Top-10
HR (32 x 32) 30.4% 51.2% 59.6%
LR (8 x 8) 10.7% 19.5% 33.1%
Bicubic 10.8% 20.1% 34.4%
DFCG [11] 9.3% 17.7% 21.4%
UR-DGN [9] 9.9% 18.6% 22.7%
DCGAN [22] 4.6% 10.9% 16.8%
PRSR [25] 10.8% 18.8% 24.4%
SR-GAN [15] 88% | 11.1% | 19.4%
Wavelet-SRNet [17] 12.8% 20.2% 30.3%
SiGAN (ResNet) 158% | 27.5% 40.4%
SiGAN (DenseNet) 151% | 26.8% 40.3%

Face recognition
rate comparison

[R=16x16 | »

HR=64x64

—

Face recognition
rate comparison
LR=8x8

HR=32x32

Method | Top-1 | Top-5 | Top-10
HR (64 x 64) 368% | 55.9% | 63.8%
LR (16 x 16) 12.4% | 27.4% 37.1%
Bicubic 11.6% | 27.5% 37.6%
DFCG [11] 9.6% | 23.7% 34.8%
UR-DGN [9] 122% | 29.0% 38.7%
DCGAN [22] 93% | 24.9% 33.9%
PRSR [25] 13.3% | 29.7% 40.1%
SR-GAN [15] 11.6% | 232% | 36.3%
Wavelet-SRNet [17] | 12.0% | 25.5% 38.8%
SiGAN (ResNet) 179% | 32.9% 48.1%
SiGAN (DenseNet) 18.3% | 33.5% 50.0%

2022/5/4 CCHSU@ACVLab
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Objective Result (8x8)

70% ] T ] T - I
e HR n
—LR
60% - ~—— Bicubic -
—PRSR
— DCGAN
50% I UR-DGN -
Baseline-|

= =[Our SiGAN |

40% |

Accuracy (in percentage)

10%

0% | | ] ] ] ] 1

Rank

2022/5/4 CCHSU@ACVLab



Summary of Our SiIGAN

= Contributions

» Label information is embedded in the generator of GAN

= A Guider for the generator
= High visual quality and identity-recognizable reconstruction
» Faster hallucination process

Tradiftonal Ourz Ground
SE. Truth

2022/5/4 CCHSU@ACVLab 64



Outline

= Deep super-resolution

» 2-D image super-resolution (generic images)

2022/5/4 CCHSU@ACVLab
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RESOLUTION-AWARE ADVERSARIAL
LEARNING

IEEE SAM 2020, Oral




GAN based Super Resolution

s N
Reconstruction
Error
\_ Yy
4 “\
Adversarial
Loss
\_ Y
s , N
Semantic
Feature

Distant

fidelity

visual quality



GAN based Super Resolution

1. Generator

.

—

2.
Discriminator

A
—

3Pre-train
VGG

bem

Reconstruction
Error

Adversarial
Loss

Semantic
Feature
Distant

Not for measuring the features of the HR and LR



Resolution Aware feature Network (RAN)

Resolution Aware




. Reconstruction

Generator
loss

N2
1
L,(XuRr,XsRr) = T 1 E |Xsr — XHR
i=1




A4
Generator . Reconstruction
loss
------- » Contrastive loss
A
6 o Ec [RAN(x'), RAN (x*)]
RAN eatures
freeze = 0.5 x [(yi; B) + (1 = yiz) x maz(0, (m — Ey)3)]
RAN features
freeze




v
Bisyrenioon . Reconstruction
loss
------- » Contrastive loss
A
RAN features— Classification Net 0
freeze Adversarial
Loss
RAN features—» Classification Net
freeze
Lean(D,G)

= Ep [log D(xxr)] + Eg [log (1 — D(G(xLr)))]




Couple Adversarial Training (CAT)

Pair

v
Genierator ~__ Reconstruction
loss l
—-p{ Contrastive loss —»{  Total loss
A
RAN features— Classification Net 0
freeze ‘ Adversarial
i Loss
RAN features—» Classification Net
freeze




Network Structure

= RAN / Discriminator (VGG16)

« Generator (DRSR)
« Hswish -> Swish

Dual Reconstruction Module

— —_
E = E —
Base Network a Og a O§
=] =]
2 > 54 —» % g2
= =
(] < 9 ) < Q9
= z o, z
) ) W = g =8 g =%
(@ @ Q Q
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= = T =
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RESULTS




Objective Quality Comparison

EVALUATED ON SETS [9], BSD100, [11] AND URBANI100 [9].

TABLE I
PERFORMANCE COMPARISON AMONG THE DIFFERENT SR METHODS

Method Set5 BSD100 Urban100
PSNR SSIM | PSNR SSIM | PSNR SSIM
MSRResNet [15] 30.28 0.864 | 2627 0.712 24.62  0.766
ESRGAN [15] 29.06  0.814 | 2557  0.682 24.15 0.712
DRSR [6] 29.18  0.823 2586  0.705 2422 0.726
RESSR [17] 30.11 0.860 | 26.22  0.709 24.65 0.766
Baseline (ours) 29.25 0.858 | 27.76  0.779 | 24.99 0.802
Proposed 29.66  0.848 26.51 0.723 24.54  0.759




Subjective Quality Comparison

&
| —

Bicubic RESSR [17] ESRGAN [15]

- A \-\k«a
DRSR [15] Ours GT




Subjective Quality Comparison

Bicubic RESSR [17] ESRGAN [15]




Subjective Quality Comparison

Bicubic RESSR [17] ESRGAN [15]

DRSR [15] Ours



Conclusion

» Resolution Aware feature Network (RAN)
» Get the resolution-aware information to the deep neural network

= Combined contrastive loss to learn the discriminative features to
“Resolution”

= Excellent both visual and objective quality of the reconstructed
images



Outline

= Deep super-resolution

= N-D image super-resolution (Hyperspectral images)

2022/5/4 CCHSU@ACVLab
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HYPERSPECTRAL IMAGE SR +
COMPRESSION

IEEE Transactions on Geoscience and Remote Sensing (TGRS), 2021




Hyperspectral Image (HSI)

Red (R) RGB Image

Green (G)

Blue (B)

Intensity

X B G R
Wavelength A

satellite

Usually used in

A -

Reflectance

P
UV—>NIR
Wavelength A

[Metha’18] N. Mehta et al., “Single-Cell Analysis Using Hyperspectral Imaging Modalities,” ASME Journal of

Biomechanical Engineering, vol.140, Feb, 2018
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What issues in HSI

» Storage requirement:

» Hyperspectral data contains abundant spectral information but also
need more storage device

= Data throughput:

» Transmit whole hyperspectral data is redundant, our lightweight
encoder achieve low sampling rate (1%)

= We provide

= Compress HIS (efficient transmission) first + super-resolution
(recover signal) in ground station.

» Our SR (Super Resolution)-aware decoder reconstructs the
hyperspectral data well only with 1% information as input
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Introduction

—

(encoder) oo

100 times faster
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(decoder)

Data Compression g Data Transmission

Ground
Station
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Proposed HCSN

Hyperspectral Compression Super-resolution Network

Consider “spectral” and “spatial” info

Hyperspectral
Sensing
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= . : .
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| i i e I | | : !
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! - 3 —» DRB DRB » DRB Output
| | : sl | feature | :->: L | feature !
3 Comv3 | - 3 map L [ L ma |
Conv.2 Y| ~ | -  ; ERT| CBaaaa Saa== —_——— P |
! Conv. 1 | I 1] A A 3
I I i - Skip connection I ' |
] ) S N — e e — = .@ : i
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lightweight encoder SR-aware decoder
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Lightweight Encoder

€I
: Hyperspectral Data
Sensing Compression’ g
~ 1%
. f - I‘
. ~ I ,f
r: e — =
: | Ground
! 1 Station
i | | |
i Conv. 2 Conv.3 l
1 Conv. 1 -
i !
e I
3x3 kernels
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Lightweight Encoder

353 kernel 3x3 kernel

Only use three 3x3 kernel conv layers
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SR-aware Decoder

Residual in Residual Dense Block

 —p L.1-Loss

et e 1 b b s e e 4 s et b b 4 e e b s 4 et b et e 4 e s . -
i Dense Residual Block |
el
! Input ) | | | Output :
- DRB DRB rN DRB tpu
I feature | | | | feature I
map I | | | map |
| I A A
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Dense Residual Block (DRB)

nf nft+gc nf+2gc nf+3gc nf+dgc

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

Skip connection

nf
A . . .
Squeeze - Squeeze t--- Squeeze - Squeeze (-
gc gc gc gc
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SR-aware Decoder

Feature |
Enhancement

Spatial

Upsampling

Spectral

Upsampling |

Decoded
Image
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Experiment

= We train the proposed HCSN with 2,537 sub-image sized of
256x256x172

= 2,537 sub-images acquired by AVIRIS sensor:

= -102 images for city areas (C-type)

= -1,870 images for mountain areas (M-type)

= - 272 images for farm/grass areas (F-type)

= - 293 images for lake/coastline areas (L-type)

» Randomly selected 90%, 10% for training set and testing set

Aviris Data Portal. [Online]. Available: https://aviris.jpl.nasa.gov/dataportal/.
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Experiment

» Spectral compressive acquisition (SpeCA) [Martin’16]
» Spatial/spectral compressed encoder (SPACE) [Lin’20]

= |_ocally similar sparsity-based hyperspectral unmixing
compressive sensing (LSS) [Zhang'16]

» Compressive sensing via joint tensor Tucker decomposition and
weighted 3-D total variation regularization (TenTV) [Wang'17]

[Martin’16] G. Martin and J. M. Bioucas-Dias, “Hyperspectral blind reconstruction from random spectral projections,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2390-2399, June 2016.
[Lin’20] C.-H. Lin, J. M. Bioucas, T.-H. Lin, Y.-C. Lin, and C.-H. Kao, “A new hyperspectral compressed sensing method for
efficient satellite communications,” in Proceedings of the 11th IEEE Sensor Array and Multichannel Signal Processing
Workshop (SAM), Hangzhou, China, Jun. 2020. (Special Session: Unsupervised Computing and Large-Scale Optimization
for Multi-dimensional Data Processing)

[Zhang’16] L. Zhang, W. Wei, Y. Zhang, H. Yan, F. Li, and C. Tian,“Locally similar sparsity-based hyperspectral compressive
sensing using unmixing,” IEEE Transactions on Computational Imaging, vol. 2, no. 2, pp. 86—100, June 2016.

[Wang’17]Y. Wang, L. Lin, Q. Zhao, T. Yue, D. Meng, and Y. Leung, “Compressive sensing of hyperspectral images via joint
tensor Tucker decomposition and weighted total variation regularization,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 12, pp. 2457-2461, Dec 2017.



Experiment

» (Spatial quality) PSNR (dB) — Peak Signal-to-Noise Ratio
» (Global quality) RMSE (degree) — Root Mean Square Error
» (Spectral quality) SAM (degree) — Spectral Angle Mapper

Test Set C-type M-type F-type L-type

Metho PSNRT/RMSE| / SAM|

SPACE 24.129/613.661/7.207  29.161/140.415/3.743 29.674/64.151/3.121 27.727/209.757/4.446
SpeCA 9.299/784.867/42.863  15.377/234.735/21.510  11.701/407.530/33.036  14.024/225.772/22.006
TenTV 20.208/570.255/26.247  18.533/260.221/22.972  20.401/248.994/18.714  18.824/314.248/25.523
LSS 7.002/615.037/48.546  0.427/232.486/57.256  3.848/259.960/50.781  2.380/341.429/55.669
HyperCSI-LSS | 25.078/278.263/8.704 26.146/51.421/4.907 25.943/82.299/5.732 25.897/83.626/5.779
HCSN (ours) 34.274/65.120/2.016 33.729/30.620/1.631 35.908/17.408/1.380 35.566/21.558/1.408
HCSN (€) 34.551/62.437/1.862 30.260/50.947/3.584 34.267/19.361/1.908 33.463/24.162/2.187
HCSN (M) 33.188/78.269/2.731 33.752/30.652/1.595 35.327/18.978/1.550 34.567/27.795/1.801
HCSN (F) 32.834/77.508/2.718 30.074/68.014/4.873 35.750/17.657/1.357 33.137/29.138/2.339
HCSN (L) 33.666/70.175/2.272 31.806/39.403/2.538 34.541/20.117/1.770 34.972/22.456/1.528
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Experiment

(d) LSS
SAM: 59.563

(b) HCSN
SAM: 2.958

(e) TenTV
SAM: 26.258

(c) SPACE

SAM: 6.019

(f) SpeCA
SAM: 27.787
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Conclusion in HIS SR

* A new deep neural network for HSI compression/reconstruction

» Fast compression by the lightweight encoder

= An efficient decoder which decode the spatial and spectral
super-resolution
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Outline

» Summary

2022/5/4

CCHSU@ACVLab
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Summary

» Single image super-resolution still remains several issues to be
overcome

= Good metric beyond GAN loss
= Visual quality vs math equation

= Different types of images have different requirements
= Network architecture design
= Applications

» Finding a good prior for super-resolution always works
= Such as “face hallucination”

2022/5/4 CCHSU@ACVLab
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